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Abstract: This paper states an estimation method for lawn grass lengths or ground conditions based on random forest 

algorithm from the observation data obtained by fusion of sensors. This estimation relates to Digital Twin and Virtual Twin of 

Hybrid Twin approach for the autonomous driving of robotic lawn mowers. The robotic lawn mowers are becoming popular with 

the advent of efficient sensors and embedded systems and we are now developing a practical autonomous driving and its group 

control algorithm for large lawn grass areas. However, one of the important functions of robotic lawn mower, that is, the length 

of lawn grasses or such ground conditions as dirt, gravel, or concrete, etc., are not recognized precisely with the current robotic 

lawn mower. As a result, the motor for cutting lawn grasses is running with constant rotation speed from the beginning to the end 

of operation of robotic lawn mower. This leads to the waste of battery and gives a large drawback for the control of robotic lawn 

mower. In order to precisely control the rotation speed of motor and save the battery, the lawn grass lengths and ground 

conditions are estimated by using the effective sensor data. The application of random forest algorithm to the fusion of sensors on 

a commercial robotic lawn mower attained more than 90% correct estimation ratio in several experiments on actual lawn grass 

areas. Now, the suggested algorithm and the fusion of sensors are evaluated against wide range of lawn and grounds. 

Keywords: Random Forest, Robotic Lawn Mower, Lawn Grass Length Estimation, Machine Learning, Hybrid Twin,  

Sensor Fusion 

 

1. Introduction 

Recently, the robotic lawn mowers (robo-mowers) are 

becoming popular with the advent of efficient sensors and 

embedded systems. However, the length of lawn grasses or 

such ground conditions as dirt, gravel, or concrete, etc., are 

not recognized. As a result, the motor for cutting lawn 

grasses is running with constant rotation speed from the 

beginning to the end of operation of robo-mower. In order 

to precisely control the rotation speed of motor, the lawn 

grass lengths and ground conditions are estimated by using 

the effective sensor data. The authors are now promoting 

the research and development on autonomous driving and 

group control for work vehicles [1-3]. 

The Hybrid Twin
TM

 approach [4] is efficient for 

controlling the object in real time. The suggested estimation 

method is useful for controlling the operation of motor for 

lawn grass cutter. When the robot is running on the area 

with long lawn grasses, the motor should be running with 

the specified maximum rotation speed. On the other hand, 

the rotation speed should be reduced or stopped when the 

robo-mower is running on the area with short lawn grasses 

or on the area without any lawn grasses, respectively. Then, 

the battery consumption will be reduced. Moreover, such a 

control of travelling speed as to reduce or to increase 

according to the length of lawn grasses is realized, the 

working time will be greatly reduced. Furthermore, a wire 

must be used for defining the working area because a 

robo-mower cannot recognize the ground conditions. 

Therefore, If the ground without lawn grasses is properly 

recognized, this wire installing is not necessary and, as a 

result, the needed maintenance will be reduced. 
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These requirements are efficiently implemented with the 

Hybrid Twin approach. The Hybrid Twin is an extension of 

Digital Twin [5] and it consists of Digital Twin and Virtual 

Twin as shown in Figure 1. The Virtual Twin has a fast 1-D 

simulator modelling the real system physically, and the 

Digital Twin is a numerical model of real system. The 

Hybrid Twin is a kind of feedback controlling system 

between real and virtual spaces.  

In the application of Hybrid Twin, firstly, the set of 

numerical data s	�t� obtained by sensors modelling the real 

space at time t is an input to Digital Twin. Secondly, the set 

of parameters obtained by Digital Twin is given to Virtual 

Twin and here, the set of parameters determining the 

behaviors in the next time �t � ∆t� is given to the real 

system. By repeating this loop, the dynamic behaviors of the 

target real system can be precisely controlled. The Hybrid 

Twin approach are used in such mission critical controls as 

aerospace and nuclear power industrial fields, etc. 

In the control of robo-mower, several sensors attached to 

its body can obtain a set of data and the suggested algorithm 

estimates the lengths of lawn grasses and ground conditions 

in Virtual Twin as a 1-D simulator. Then, the parameter 

controlling rotation speed of motor cutting lawn grasses is 

given the motor of robo-mower. This paper describes the 

necessary sensor data which should be used as a numerical 

model of robo-mower and the algorithm estimating the 

lengths of lawn grasses and ground conditions. Therefore, 

the novelty of this paper is that the random forest algorithm 

is applied to the estimation system mentioned above and a 

sensor fusion, that is, a combination of necessary sensor 

data is suggested. Moreover, the research is based on the 

implementation of Hybrid Twin for autonomous driving of 

robo-mower as well as same type of work vehicles. 

The sensor fusion and the utilization of obtained big data 

have attracted many researchers’ concern. Recently, there 

are detailed surveys on the combination of sensor fusion 

and big data analysis [6, 7]. Some applications to actual 

problems are also reported [8-10]. The popular approach for 

the big data analysis is the utilization of machine learning. 

G. Takami et al. [8] take the problem of observation of plant 

status. They used three kinds of sensors and a deep learning 

algorithm for the big data analysis. The details of deep 

learning algorithm are not described, and the processing 

time of observation system is not known. However, it may 

be useful that they suggested the expectation of 

deterioration analysis of sensors by their combination. S. 

Alonso et al. [9] also adopted the same approach for 

observing a screw compressor in a chiller. They used five 

kinds of sensor data and 1D convolutional neural network 

(CNN) for their analysis. The adoption of 1D CNN makes 

the monitoring fast and the real-time processing is realized. 

Their approach is likely to be suitable for the data without 

any estimated features, however, in our case, it is known 

that some features may be efficient for the estimation in 

advance. C. Li et al. [10] deals with the diagnosis of 

rotating machinery. They used the vibration sensor signals 

and the Gaussian-Bernoulli deep Boltzmann Machine was 

used for their analysis. The accuracy of fault estimation was 

evaluated; however, its real-time processing requirement 

was not mentioned. Therefore, this approach can’t be 

applied to the problem dealt with in this paper. 

 

Figure 1. Suggested estimation system as a Hybrid Twin. 

 

Figure 2. Robo-mower used for experiments. 

In the followings, the robo-mower used in this paper is 

described in chapter 2 and of course, the discussions are not 

limited to this robo-mower. Chapter 3 is the description on 

the suggested algorithm based on random forest which is 

used as a 1-D simulator in Virtual Twin. In chapter 4, the 

experimental results based on the big data obtained by the 
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fusion of sensors and a set of features for classifying the 

obtained sensor data. Moreover, the set of necessary sensors 

and the performance evaluations of suggested algorithm are 

stated. Finally, in chapter 5, the obtained results are 

summarized. 

2. Robotic Lawn Mower 

An example of commercial robo-mower [11] is shown in 

Figure 2. This robot is used for the experiments by attaching 

some sensors, single-board computer, personal computer and 

some peripheral devices. All these devices are under the 

management of ROS (Robot Operating System) running on 

the personal computer. The robo-mower can be autonomously 

driven; however, it is controlled by a Bluetooth controlling 

device in the following experiments for increasing the 

accuracy of experiment. A camera can be a candidate as a 

sensor but its cost including image processing software and 

hardware is inadequate for a commercial product. In the 

experiments, it is shown that no camera is needed for the 

required estimation. 

3. Machine Learning Algorithm as 1-D 

Simulator 

As a 1-D simulator included in Virtual Twin to estimate 

lawn grass lengths or ground conditions, a machine learning 

algorithm is adopted. The random forest algorithm is used 

because of its high performance and short processing speed. 

3.1. Random Forest Algorithm 

The random forest algorithm, which is one of machine 

learning algorithms, originates from Breiman [12], and 

recently, its deep version is also suggested [13]. This 

algorithm is used for classification, regression or clustering, 

etc., and is a kind of ensemble algorithm using a set of 

decision trees as weak learners in order to avoid the 

over-fitting and to keep the generalization. This is fast and 

attains comparatively high performances. According to the 

paper [13], the deep random forest algorithm attains better 

results in some applications, however, the performances are 

almost the same in other applications. In the followings, an 

original random forest algorithm is adopted. 

The random forest algorithm consists of given number of 

binary decision trees. The training and the inference phases 

are shown in Figures 3 (a) and (b), respectively. In the 

configuration of binary decision trees, a set of training data 

sampled from the input data is given to each of the binary 

decision trees. Then, the binary decision tree is constructed in 

the way shown in Figure 4. The data consist of the 

followings: 

�	
�  �� 
 1,2,⋯ , �� : input data for classification, 

regression or clustering, etc., 

��
� �� 
 1,2,⋯ , ��: features for classifying input data 

�	
�. 

 

 

Figure 3. Random forest algorithm. 

3.2. Configuration of Binary Decision Tree 

An example of binary decision tree is shown in Figure 4. In 

the root node, the input data is divided into two subsets by 

using the conditions, �� � �� and �� � ��. If the data satisfy 

the condition �� � ��, the data is classified to the class �� as 

shown in this figure. When all data are classified to the 

corresponding class (that is, a leaf), the binary decision tree is 

completed. Here, for example, CART (Classification And 

Regression Tree) algorithm is used and the objective function 

may be Gini’s diversity index [13]. All parameters in binary 

decision trees are utilized in the consecutive classification 

phase. 
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Figure 4. Construction of binary decision tree. 

3.3. Classification of Data 

In the classification of data, for example, the Bagging 

method in the ensemble algorithm is applied. Here, the data 

which should be classified are given to all binary decision 

trees and then, the decision by each binary decision tree is 

obtained. The final decision, that is, the class the data 

belongs to, is determined based on the rule of majority. This 

process is fast if the binary decision trees are executed in 

parallel and the quality of decision would be better than by 

using just one binary decision tree. The processing time for 

categorizing the field is very much important as a 1-D 

simulator in the Virtual Twin. 

4. Experimental Results 

This section describes the experimental results when the 

random forest algorithm is applied to the actual lawn grass 

length estimation. 

4.1. Sensors 

The sensors attached to the robo-mower shown in Figure 2 

are listed in Table 1. 

Table 1. Sensors used in measuring parameters. 

Sensors Mounting Positions Measurements 

9-axis Inertia 

Measurement 

Unit 

Inside of Body 
Acceleration 

Angular Acceleration 

Surface of Body 
Acceleration 

Angular Acceleration 

Built-In 

Battery 

Voltage 

Current 

Power 

Rotation of Grass Cutting Motor 

Rotation of Travelling Motor 

Horizontal / Vertical Acceleration 

The robo-mower has been equipped with the built-in 

sensors. The 9-axis Inertia Measurement Units (IMU), 

MPU-9250 [14], are attached to the inside and to the surface 

of body for measuring the acceleration and angular 

acceleration. Six built-in sensors are available for measuring 

the corresponding parameters as shown in Table 1. Here, the 

noise of sensor is negligibly small and outliers are excluded. 

The objective of experiments is to determine what 

combination of sensors would be effective for obtaining the 

relationship between sensors attached to the robo-mower and 

the estimation of the lawn grass lengths or ground conditions. 

4.2. Measurement Data 

The data measured by sensors are obtained by actually 

driving the robo-mower on the field with long lawn grasses, 

with short lawn grasses and without lawn grasses. The actual 

remote-controlled driving of robo-mower is shown in Figure 

5. The remote-controlling function by a Bluetooth 

communication is incorporated to robo-mower by mounting a 

mini-PC and by executing ROS on it. The mini-PC can also 

handle the collected sensor data. 

 

Figure 5. Remote-controlled driving of robo-mower. 

The collected data are manually categorized into the data 

set for long or for short lawn grasses according the specified 

height of grass cutter. If the length of lawn grasses is higher 

than that of grass cutter, the lawn grasses set to be long and 

otherwise, the lawn grasses are set to be short. When the 

heights of lawn grasses and the grass cutter are equal, a 

human operator determines the lawn grass is long or short 

according the operation sound of grass cutter. The 

measurement data are collected so as to the total time be 2.3 

hours. All data are collected on flat lands on sunny days. 

4.3. Features for Classifying Data 

Such statistical features of input data, ��
�  �� 


1,2,⋯ , ��  for classification as (i) maximum value, (ii) 

minimum value, (iii) average value, (iv) median value, (v) 

standard deviation value, (vi) kurtosis value and (vii) 

skewness value are calculated. Here, the values of seven 

types of features are normalized into the interval [-1,1]. 

These features are used in configuring binary decision trees. 

These features are calculated for a time frame obtained 

approximately every 3.2 seconds over 2.3-hour measurement 

data. The details of collected data are shown in Table 2. 

Actually, the total length of data is less than 2.3 hours 
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because of some issues with measurement devices, the 

obtained data are used. 

In the experiments, a subset of time frames obtained from 

each field data is used for configuring the binary decision trees 

and the completed forest is applied to the remaining test data. 

Then, the performances of classification are evaluated. 

Table 2. Details of collected data. 

Groups Number of Time Frames 

Long Lawn Grasses 2,356 

Short Lawn Grasses 1,575 

Not Lawn Grasses 3,374 

Total 7,305 

Among these data, the number of time frames are 

randomly selected as configuring the binary decision trees 

(training) in each group. The remaining time frames are used 

as test data for random forest’s performances (testing). These 

are shown in Table 3. 

Table 3. Number of frames used for training and testing. 

Groups 
Number of Time Frames 

for Training for Testing 

Long Lawn Grasses 1,686  670 

Short Lawn Grasses  904  671 

Not Lawn Grasses 2705  669 

Total 5,295 2,010 

4.4. Evaluation Criteria 

Each of the time frame data has its own label, that is, long 

lawn grasses, short lawn grasses and not lawn grasses, and 

the prediction can be verified. The prediction process 

consists of two stages. The first stage is used to estimate 

whether the area is with lawn grasses or not. In the second 

stage, the area is further estimated whether it is with long 

lawn grasses or short lawn grasses when the area is estimated 

to have lawn grasses. In the testing, four kinds of evaluation 

criteria are used. These are defined below [15]. 

Table 4. Measurement of prediction performance. 

 
Actuals 

Positive Negative 

Predictions 
Positive TP FP 

Negative FN TN 

(1) Accuracy 

�������� 

� � �!

� � " � "! � �!
 

(2) Precision 

 �#��$�%	 

� 

� � " 
 

(3) Recall 

&#���� 

� 

� � "!
 

(4) F-measure 

" −(#�$��# 

2 ∗  �#$�$�%	 ∗ &#����

 �#��$�%	 + &#����
 

Here, TP, TN, FP and FN mean the numbers of “True 

Positive”, “True Negative”, “False Positive” and “False 

Negative”, respectively. 

4.5. Evaluation Results 

Seven combinations of selected sensor data are shown in 

Table 5. These combinations cover all actual cases. By using 

the data from Cases 1 to 7, the best combination of sensor data 

is determined based on the above-mentioned evaluation 

criteria. 

The procedure of experiment is as follows. 

Select the sensor data corresponding to the cases shown in 

Table 5 collected in three ground conditions, that is, “Long 

Lawn Grasses”, “Short Lawn Grasses”, and “Not Lawn 

Grasses”. 

Determine the subset of sensor data (1) and partition it for 

configuring the binary decision trees and for testing the 

random forest according to the number of time frames shown 

in Table 3. 

Configure the binary decision trees. 

Evaluate the performances of random forest based on the 

evaluation criteria. 

The number of binary decision trees, that is, the size of 

forest is set to 1,000. Each binary decision tree is configured 

by using the seven features mentioned in section 4.3 until each 

leaf coincides to one of three ground conditions. An example 

of binary decision tree is shown in Figure 6. Here, the feature, 

median value, obtained from built-in vertical angle sensor data 

with its threshold, 370.75, is used for classifying the input data 

on the root node. The class “TreeBagger” in Statics and 

Machine Learning Toolbox in MATLAB [16] is used as an 

implementation of random forest algorithm. The processing 

time for configuring 1,000 binary decision trees is less than 

ten minutes on a PC with the standard performances. The 

completed forest is applied to the testing data whose size is 

around 700 in each of three ground conditions shown in Table 

3. The processing time needed for prediction is almost 

negligibly small and this is no issue in actual Hybrid Twin 

approach. The performances are shown in Table 6. Seven 

cases are evaluated with respect to the measurement criteria in 

each ground condition. The most important performance is the 

accuracy and it becomes high when the built-in sensor data are 

used. Particularly, Cases 6 and 7 without using built-in 

horizontal or vertical angle sensor have higher accuracy. It 

seems reasonable that the battery status and motor rotation 

conditions contribute to higher performances because the 

rotation of motor would be high when it encounters the long 

lawn grasses. On the other hand, the load to both of grass 

cutting motor and travelling motor would be reduced when the 

robo-mower is travelling on the ground without lawn grasses. 

From the evaluation results, Case 6 would be desirable among 

seven cases. The reason is that: 

The accuracy is very high, the difference is only 0.1 points 
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from the maximum 92.28%, 

The recall ratio of “Short Lawn Grasses”, 87.08%, is 

highest. 

Especially, the low recall ratio of “Short Lawn Grasses” 

means that the probability of incorrectly recognizing the short 

lawn grasses as long lawn grasses or the ground other than 

lawn grasses becomes high. Then, the travelling speed of 

robo-mower is reduced and the rotation of grass cutting motor 

is increased. This would increase the working time and waste 

the electric power. Moreover, this is much more serious, the 

robo-mower will not travel the area and will not cut lawn 

grasses when the short lawn grass area is recognized as the 

ground without lawn grasses. Therefore, it would be 

concluded that Case 6 is the best in this evaluation results. In 

Case 6, such sensor data as the acceleration and the angular 

acceleration values obtained by 9-axis IMU attached inside of 

body, the voltage, current and power of battery, and the 

rotations of grass cutting motor and of travelling motor 

obtained by built-in sensors are utilized. 

Table 5. Combination of selected sensor data obtained in three ground conditions. 

Sensors Mounting Positions Measurements Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

9-axis Inertia 

Measurement 

Unit 

Inside of Body 
Acceleration √  √   √  √  √  √  

Angular Acceleration √  √   √  √  √  √  

Surface of Body 
Acceleration  √    √   √  

Angular Acceleration  √    √   √  

Built-In 

Battery 

Voltage   √  √  √  √  √  

Current   √  √  √  √  √  

Power   √  √  √  √  √  

Rotation of Grass Cutting Motor   √  √  √  √  √  

Rotation of Travelling Motor   √  √  √  √  √  

Horizontal / Vertical Angles   √  √  √    

 

Figure 6. Example of binary decision tree in random forest algorithm. 

Table 6. Combination of selected sensor data obtained in three ground conditions. 

Combinations of Sensor Data Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Accuracy 75,84 77.52 86.32 90.92 91.58 92.18 92.28 

Long Lawn Grasses 

Precision 77.06 70.70 92.68 92.60 91.46 92.66 91.04 

Recall 73.02 67.70 93.46 93.60 93.64 93.44 93.56 

F-measure 74.99 69.17 93.07 93.10 92.54 93.05 92.28 

Short Lawn Grasses 

Precision 72.66 73.84 87.30 90.48 92.12 89.40 92.04 

Recall 60.88 68.28 70.06 82.00 83.26 87.08 85.58 

F-measure 66.25 70.95 77.73 86.03 87.47 88.22 88.69 

Not Lawn Grasses 

Precision 77.06 86.34 80.24 89.70 91.34 94.40 93.72 

Recall 93.60 96.60 95.46 97.20 97.90 96.08 97.70 

F-measure 84.53 91.18 87.19 93.30 94.51 95.23 95.67 

Average of Precisions, Recalls, and F-measures 75,56 77.20 86.35 90.89 91.58 92.17 92.25 
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4.6. Feature Importance 

In section 4.5, the efficient combination of sensor data 

is discussed and determined. As another discussion, it 

should be evaluated how much each feature contributes to 

classify the sensor data. This analysis is called the “feature 

importance” in the decision tree. When there are some 

features, not all features but only such features with large 

importance may be used to classify the dataset. As a result, 

the processing time and the memory usage can be reduced, 

and a random forest algorithm can be implemented on, for 

example, a single-board microcomputer. 

Table 7. Importance of features in first estimation stage in Case 6. 

Features Importance 

Kurtosis of y-Directional Angular Acceleration of 9-Axis 

IMU attached Inside of Body 
1.079 

Minimum of y-Directional Angular Acceleration of 9-Axis 

IMU attached on Surface of Body 
1.060 

Mean of Currents of Built-in Battery 0.935 

Maximum of y-Directional Angular Acceleration of 

9-Axis IMU attached on Surface of Body 
0.928 

Standard Deviation of y-Directional Angular Acceleration 

of 9-Axis IMU attached on Surface of Body 
0.907 

Maximum of x-Directional Angular Acceleration of 

9-Axis IMU attached on Surface of Body 
0.870 

Median of Currents of Built-in Battery 0.850 

Standard Deviation of x-Directional Angular Acceleration 

of 9-Axis IMU attached Inside of Body 
0.845 

Kurtosis of z-Directional Angular Acceleration of 9-Axis 

IMU attached Inside of Body 
0.773 

Standard Deviation of z-Directional Angular Acceleration 

of 9-Axis IMU attached Inside of body 
0.764 

 

Figure 7. Kurtosis of y-directional angular acceleration of 9-axis IMU 

attached Inside of Body vs. area conditions. 

The importance of features is obtained and shown in 

Table 7 in the first estimation stage in Case 6. This stage 

estimates whether the area is with lawn grasses or not. In 

Case 6, seven kinds of sensor data are used as shown in 

Table 5. Also, as shown in section 4.3, there are seven 

features and, currently, 49 features obtained from seven 

data set are used in the classification. By applying the 

standard algorithm [16] for calculating the feature 

importance, the result is shown in Table 7. Here, such 

features as “Kurtosis of y-Directional Angular 

Acceleration of 9-Axis IMU attached Inside of Body” and 

“Minimum of y-Directional Angular Acceleration of 

9-Axis IMU attached on Surface of Body” have 

importance values more than 1. In Figure 7, the 

relationship between “Kurtosis of y-Directional Angular 

Acceleration of 9-Axis IMU attached Inside of Body” 

versus the area with or without lawn grasses is shown. 

Actually, the values of the kurtoses between the area with 

lawn grasses and the area without lawn grasses are almost 

different. However, the difference is not large enough to 

separate the areas with or without lawn grasses and it is 

necessary to use the features with second or third 

importance in Table 7. 

 

Figure 8. Minimum of y-directional angular acceleration of 9-axis IMU 

attached Inside of Body vs. area conditions. 

Table 8. Importance of features in second estimation stage in Case 6. 

Features Importance 

Mean of Currents of Built-in Battery  1.080 

Maximum of Rotations of Right Travelling Motor 0.874 

Median of Currents of Built-in Battery 0.807 

Mean of Powers of Built-in Battery 0.789 

Maximum of Currents of Built-in Battery 0.702 

Maximum of Rotations of Left Travelling Motor 0.674 

Minimum of Powers of Built-in Battery 0.662 

Median of Powers of Built-in Battery 0.645 

Maximum of Currents of Built-in Battery  0.582 

Standard Deviation of Rotations of Grass Cutting Motor  0.570 

The second feature, “Minimum of y-Directional Angular 

Acceleration of 9-Axis IMU attached on Surface of Body,” 

gives the same kind of relationship shown in Figure 8. From 

these figures, it can be shown that the higher accuracy of 

estimating the area is not attained by only using these two 

features. Moreover, the importance of features in the second 

estimation is shown in Table 8. This stage estimates whether 

the area is with long lawn grasses or with short lawn grasses. 

Here, the feature, “Mean of Currents of Built-in Battery” has 

the largest importance. Therefore, it is likely that the larger 
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amount of current is needed when a long lawn grasses should 

be cut. The corresponding relationship is shown in Figure 9. 

The values of feature are largely different between the areas 

with long and short lawn grasses. 

 

Figure 9. Average of currents of Built-In Battery vs. area conditions. 

In this paper, high accuracy of classification is necessary 

and 49 features are used, but by calculating the importance 

for each feature, such features, less than 49 features, as 

necessary and sufficient may be obtained according to the 

required accuracy. 

5. Conclusions 

The issue to recognize the ground conditions, that is, with 

long lawn grasses, short lawn grasses, or without lawn grasses 

by analyzing the data obtained from sensors attached to the 

robo-mower is dealt with. Ten kinds of sensor data are 

obtained, and they are analyzed by applying a large-scale 

random forest algorithm with 1,000 binary decision trees and 

seven kinds of features. In the experiments by actually driving 

a robo-mower, the combination of such sensor data as 

acceleration and angular acceleration data from 9-axis inertia 

measurement unit attached inside of body, the voltage, current 

and power of battery, rotation of grass cutting motor and 

rotation of travelling motor obtained from built-in sensors 

attains the best performance from the practical point of view. 

Actually, in testing, the accuracy against 2,010 sensor data is 

92.18% and the processing times are five to ten minutes in 

training (configuration of 1,000 binary decision trees) and 

negligibly small in testing, respectively. This shows the 

feasibility of suggested approach. Finally, the feature 

importance in the decision tree is discussed for evaluating the 

contribution of each feature. This analysis is useful for 

obtaining the necessary and sufficient features. As future work, 

the variation of ground conditions, that is, the kind of lawn 

grasses and grounds without lawn grasses should be increased 

in experiments. Moreover, the implementation of suggested 

system should be discussed by using single-board 

microprocessors and efficient communication methods 

between robo-mower and a central controller for realizing the 

Hybrid Twin system. 
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